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Abstract In this paper we expand the equations governing Michaelis–Menten kinet-
ics in a total quasi-steady state setting, finding the first order uniform expansions. Our
results improve previous approximations and work well especially in presence of an
enzyme excess.
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1 Introduction

Since the pioneering papers by Bodenstein and Underhill [1] and Chapman [2] in
1913 the quasi-steady state approximation (QSSA) has represented a very important
tool in the mathematical modeling of biochemical reactions. It brings to a simplifica-
tion of the model and allows the qualitative analysis of the reaction, in terms of time
scales separation, asymptotic behavior etc., which any numerical analysis could not,
in general, capture.

In enzyme kinetics, the standard QSSA (sQSSA), or Michaelis–Menten–Briggs–
Haldane approximation [3,4] was introduced in order to describe the phase after the
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short transient, where the catalytic enzyme and the substrate rapidly form complexes
at high concentrations.

From the Sixties of the last century, mathematicians have interpreted the QSSA in
terms of leading order in asymptotic expansions with respect to an appropriate param-
eter ε, which must be supposed sufficiently small. Heineken et al. [5] use ε = ET

ST
,

where ET and ST are respectively the total catalyst concentrations and the substrate
concentrations; Segel and Slemrod [6] use ε = ET

ST+KM
, where KM is the Michaelis

constant or affinity constant, showing that the sQSSA is valid in a more extended
parameter range than the one supposed by biochemists.

The technique of singular perturbations allows us to mathematically reproduce the
boundary layer in the temporal evolution of the complex concentrations and the separa-
tion between the two characteristic time scales, related to the rapid complex formation
and to the substrate depletion.

Laidler in 1955 [7], Swoboda in 1957 [8,9], Schauer and Heinrich in 1979 [10] and
Borghans, deBoer and Segel in 1996 [11] have approached enzyme kinetics from a
different point of view, which is now known as total QSSA (tQSSA) and is valid in
a wider range of parameters (see also [12]). The tQSSA has been applied to several
enzyme reactions [13–18] even in a stochastic framework [19].

In the papers [8–12,17] the tQSSA has been approached requiring some conditions
which simplify equations, without any formal tool in terms of asymptotic expansions.
In 2002 Schnell and Maini [20] studied the tQSSA by means of aggregation or lumping
techniques, which reduce the number of differential equations describing the system
[21]. They nondimensionalized the system of differential equations governing the
reaction and introduced the perturbation parameter ε = K ET

(KM+ET+ST )2 , where K is
the van Slyke–Cullen constant [22]. They consider a more general form of the total
substrate s introduced by Swoboda. However, the leading order term of their expan-
sion unexpectedly reproduces the sQSSA, instead of the tQSSA. In 2008 Dingee and
Anton [23] developed a two-parameter singular perturbation analysis which curiously,
at the leading order, does not reproduce the approximated solutions given by Laidler,
Schauer and Heinrich and Borghans, deBoer and Segel, but the zero-order approxi-
mation of the tQSSA, obtained by Tzafriri [12] with respect to the parameter

ε = K

2ST

(
ET + KM + ST√

(ET + KM + ST )2 − 4ET ST

− 1

)

which is valid in a more restricted range of parameters.
In this paper we find, as far as we know for the first time, the tQSSA as the lead-

ing order of an asymptotic expansion, obtained with respect to the parameter ε =
K ET

(KM+ET+ST )2 , we find the first order corrections of the inner and the outer solutions
(reproducing, respectively, the transient and the QSSA phase) and finally the uniform
approximations.

We compare our results with those ones given by [11,23] and with similar ones
obtained in the case ET � ST [24] in a standard framework. Due to the first order
corrections to their formulas, the parameter range of validity of our results improves
that one obtained by Borghans, deBoer and Segel. We also compute the errors of the
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different approximations here considered with respect to the numerical solutions of the
full system of equations. The results show that the expansion obtained in this paper is
in a very good agreement with the numerical solutions for a wide range of parameters.

2 Model equations and nondimensionalization

Let us consider the classical Michelis–Menten kinetics

E + S
k1−→←−

k−1
C

k2−→ E + P, (1)

where E, S, C, P represent respectively the catalytic enzyme, its substrate, the
enzyme–substrate complex and the final product (i.e., the activated substrate). Using
the law of mass action this scheme can be translated into the following system of
(dimensional) differential equations:

d S

dt
= −k1(ET − C)S + k−1 C

dC

dt
= k1(ET − C)S − (k−1 + k2)C ,

(2)

with initial conditions

S(0) = ST , C(0) = 0, (3)

and conservation laws

E + C = ET , S + C + P = ST . (4)

Introducing the total substrate S = S + C , we obtain

d S

dt
= −k2 C,

dC

dt
= k1

[
C2 − (ET + S + KM ) C + ET S

] (5)

with initial conditions

S(0) = ST , C(0) = 0, (6)

and conservation laws

E + C = ET , S + P = ST . (7)
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If we adopt the change of variables

S = α s , C = β c , t = γ τ

we find that Eq(s). (5) become

α

γ

ds

dτ
= −k2β c

β

γ

dc

dτ
= k1

[
β2 c2 − (ET + KM + α s)β c + ET αs

] (8)

We should first scale the inner variables, since they are supplemented by the initial
conditions (6) that give us, when they are nonzero, information about the magnitude
of the variables involved. Thus it follows immediately that α = ST . Therefore the
second equation of (8) becomes

β

γ

dc

dτ
= k1

[
β2 c2 − (ET + KM + ST s)β c + ET ST s

]
(9)

Now we attempt to ensure that all the terms on the right hand side of (9) are of the
same magnitude, supposing that both c and s are O(1). Proceeding as in [6] and [11],
neglecting the term in c2 and then setting for scaling purposes s = 1 and c = 1, we
find

(ET + KM + ST ) β = ET ST , i.e., β = ET ST

ET + KM + ST
(10)

while γ is determined by requiring that the left hand side of (9) is of the same mag-
nitude as the right hand side, i.e.,

γ = β

k1 ET ST
= 1

k1(ET + KM + ST )
(11)

The parameter γ corresponds to the time scale tc of the complex formation [11,23].

3 Asymptotic expansions

Substituting in (8) the values obtained for α, β and γ , we have the inner equations:

ds

dτ
= −ε c

dc

dτ
= σ ηc2 − (η + κM ) c − σ s c + s

(12)

with initial conditions s(0) = 1 and c(0) = 0, where

σ = ST

KM + ET + ST
, η = ET

KM + ET + ST
, κM = KM

KM + ET + ST

123



1140 J Math Chem (2012) 50:1136–1148

and

ε = KET

(KM + ET + ST )2 (13)

where K = k2
k1

is the Van Slyke–Cullen constant.
The parameter ε, appearing in the right hand side of the first equation (12), arises

as the natural perturbation parameter of our asymptotic expansion.
Let us remark that, with our scaling argumentation, we obtain the same perturba-

tion parameter as in [20,23]. Moreover, for any set of kinetic parameters and initial
conditions, ε ≤ 1

4 [23].
Observe that

σ + κM + η = 1 (14)

Let us expand the solutions of (12) in the form

s = 
0 + ε 
1 + o(ε) , c = �0 + ε �1 + o(ε).

Substituting in (12) and taking into account the initial conditions, we find at order 0
that 
0 = const = 1 and

d�0

dτ
= σ η �2

0 − �0 + 1 (15)

whose solution, complying with (6), is easily found as

�0(τ ) = exp(
√

1− 4σ η τ)− 1

σ η [�+0 exp(
√

1− 4σ η τ)− �−0 ]
(16)

where �±0 =
1±√1− 4 σ η

2 σ η
.

Let us observe that in the classical treatment of the transient phase, in order to sim-
plify equations, one of the most commonly accepted assumptions is that, mostly when
ST � ET , S can be considered constant, i. e., d S

dt = 0. Actually, taking into account
the initial conditions, we have d S

dt (0) = −k1 ET ST , which is clearly in contrast with
the previous assumption, especially when ET ST is high. On the contrary, using the

total substrate, from (5) we have d S
dt (0) = 0, which is much more realistic, since it

mathematically reproduces the fact that, in the transient phase, the sum of S and C
can be considered constant, because the product P has not been substantially created
yet. The leading order approximation 
0 = const. = 1 is thus consistent with this
assumption.

Note that

1

�±0
= ση�∓0
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and

�+0 · �−0 =
1

ση
.

Moreover,

lim
τ→∞�0(τ ) = 1

ση�+0
= �−0 .

At order 1 we have

d
1

dτ
= −�0 (17)

d�1

dτ
= �1 (2σ η �0 − 1)− σ 
1 �0 +
1 (18)

with homogeneous initial conditions, which give


1 = 1

σ η
log

(
�+0 exp(

√
1− 4σ η τ)− �−0

�+0 − �−0

)
− �+0 τ (19)

and the corresponding �1. Details for this latter function are given in the Appendix (A).
Now we turn our attention to the outer solutions of (8). We only need to change

the timescale γ ; to this aim let us focus on the first equation of (8). In the slow, quasi-
steady state phase the total variable s cannot anymore be considered roughly constant:
it decreases monotonically from ST to zero. Hence, to balance the left hand side with
the right one we set

γ = α

k2 β
= ET + KM + ST

vmax
(20)

where vmax = k2 ET is the maximal reaction velocity. In this case, γ represents the
time scale ts , related to the total substrate depletion [11,23]. Note that, having denoted
by tc the time scale in the fast, pre-steady phase and by ts the time scale in the slow,
quasi-steady phase, we get

tc
ts
= ε. (21)

Thus ε represents a measure of the separation between the two time scales.
Setting T = γ t and substituting (20) in (8) we obtain

ds

dT
= −c

ε
dc

dT
= σ ηc2 − (η + κM ) c − σ s c + s (22)
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Since ε multiplies the highest derivative, we expect a boundary layer effect in the time
evolution of c.

Let us expand the solutions of (22) in the form

s = s0 + ε s1 + o(ε) , c = c0 + ε c1 + o(ε).

Upon substitution in (22) we find, at leading order,

ds0

dT
= −c0

σ ηc2
0 − (η + κM + σ s0) c0 + s0 = 0

(23)

which correspond to the equations obtained in the tQSSA [10,11].
The second equation above is algebraic in c0 with solutions

c±0 =
η + κM + σ s0 ±

√
(η + κM + σ s0)2 − 4σ ηs0

2 ση
(24)

and it is easy to see that only c−0 is admissible.
Because of (24), the first equation in (23) becomes

ds0

dT
= −c−0 . (25)

with the initial condition given by the matching condition s0(0) = lim
τ→∞
0(τ ) = 1

for the leading order terms in the inner and outer expansions of s; thus we have auto-
matically that c0(0) = c−0 (0) = �−0 .

From (22) it is found that the first correction terms in the outer solutions are given by

ds1

dT
= −c1 (26)

c1 = c′0 + s1 (σ c0 − 1)

2 η σ c0 − σ s0 − η − κM
. (27)

Note that, since for τ →∞ we get


1(τ ) ∼ 1

ση
log

�+0
�+0 − �−0

− �−0 τ , (28)

then the matching condition for the first order corrections of s gives the appropriate
initial condition to solve numerically the first equation in (26), i.e.,

s1(0) = 1

σ η
log

�+0
�+0 − �−0

. (29)
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It only remains to find the matching condition for the first order correction of the
complex concentration c. To this aim, we observe that �1, given by (42), behaves
asymptotically as a straight line of the form y = mτ + q, whose slope is

m = �−0 (σ �−0 − 1)√
1− 4ση

(30)

and whose y-intercept must be equal to the y-intercept of the outer solution c1, that
is q = c1(0), where the latter quantity is found using (42) or, equivalently, (27) and
(24), as

q = 1

η
√

1− 4ση

[
�−0
2

(
1− 1− 2η√

1− 4ση

)
+ 1− σ�−0

σ
log

(
�+0

�+0 − �−0

)]
(31)

In conclusion, we can write the (nondimensional) uniform expansions as

cun(τ ) = cun
0 (ετ )+ εcun

1 (τ ) ; sun(τ ) = sun
0 (ετ )+ εsun

1 (τ ) (32)

where, following [25], we obtain the uniform approximations adding the inner and
outer solutions and subtracting their common part, i.e.,

cun
0 (τ ) = c0(ετ )+ �0(τ )− �−0

sun
0 (τ ) = s0(ετ )+
0(τ )− 1 = 
0(τ )

cun
1 (τ ) = c1(ετ )+ �1(τ )− mτ − q

sun
1 (τ ) = s1(ετ )+
1(τ )− 1

ση
log

�+0
�+0 −�−0

+ �−0 τ

(33)

where m and q are given by (30) and (31).

4 Figures and discussion

We have solved numerically (2) and we have compared the results with our uniform
approximations. This is shown in Figs. 1, 2, where we have changed only two kinetic
parameters, in order to have different values of ε. In both cases our uniform expansion
shows an excellent agreement with the numerical solution of the full system (2).

In Fig. 2 we observe a less accurate approximation, since in this case the value of
ε = 0.1856 is close to the bound 1

4 .
Observe that we have chosen values for ST and ET such that the sQSSA approx-

imates the dynamics with very low accuracy. In fact this latter approximation, in
general, works well when there is a substrate excess, or when KM � ET [5,6]. When
there is an enzyme excess, as in our case, the perturbation techniques rely on the
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Fig. 1 Dynamics of S (left panel) and of C (right panel): full system (solid), uniform approximation
(dashed). Kinetic parameters: ET = 3, ST = 1, k1 = 1, k−1 = 1, k2 = 1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S

time
0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C

time

Fig. 2 Dynamics of S (left panel) and of C (right panel): full system (solid), uniform approximation
(dashed). Kinetic parameters: ET = 3, ST = 1, k1 = 1, k−1 = 0.04, k2 = 4

same parameter ε given in (13), but in a QSSA setting [24,26]. To highlight the accu-
racy of our expansions, we have compared our approximations with the ones given
in [11,20,23,24] computing the mean absolute percentage error (MAPE) for each
approximation and each set of kinetic parameters (see Tables 1, 2). It turns out that the
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Table 1 Perturbation parameters ε and MAPEs for the substrate S in the approximations (33) and in the
ones given in [11,20,23,24], respectively

Figures ε errun errB D errBd BS errD A errSM

1 0.0833 0.0396 0.6064 0.4330 0.0578 1.6150
2 0.1856 0.2676 0.3103 1.2842 0.2815 0.0202

Table 2 Perturbation parameters ε and MAPEs for the complex C in the approximations (33) and in the
ones given in [11,20,23,24], respectively

Figures ε errun errB D errBd BS errD A errSM

1 0.0833 0.0287 0.5112 0.1199 0.0407 1.8380
2 0.1856 0.1324 1.3117 0.2836 0.1311 0.2370

MAPEs of our approximations have the same order of magnitude of the perturbation
parameter, as in the approximation given in [23]. Anyway, this latter result rely on a
double-parameters perturbation technique and is much more involved than ours. On
the other hand, as expected, the results given in [11] give bigger MAPEs (they are our
leading order terms), as for the results given in [24]. These latter ones were found,
anyway, in a standard setting. Surprisingly, the results given in [20] are consistently
worse than ours, in all cases but one. Maybe this is due to the fact that in [20] the inner
expansion is carried out in detail, while the outer is almost missing.

Acknowledgments Alberto Bersani gratefully acknowledges the financial support of the “Fondazione
Tullio Levi-Civita di Cisterna di Latina”.

Appendix A: Solution of Eq. (18)

Let us set R = √
1− 4ησ .

The equation for the term �1 is

d�1

dτ
= (2ση�0 − 1)�1 + (1− σ�0)
1 (34)

i.e.

d�1

dτ
+

{
1+ 2

[
1− eRτ

�+0 eRτ − �−0

]}
�1

=
{

1

ση
log

[
�+0 eRτ − �−0

�+0 − �−0

]
− �+0 τ

}{
1+

[
1− eRτ

η
(
�+0 eRτ − �−0

)
]}

(35)
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whose formal solution is

�1(τ ) = e−A(τ ) ·
τ∫

0

{
1

ση
log

[
�+0 eRw − �−0

�+0 − �−0

]
− �+0 w

}

{
1+

[
1− eRw

η
(
�+0 eRw − �−0

)
]}

eA(w)dw (36)

where

eA(τ ) = exp

⎛
⎝ τ∫

0

{
1+ 2

[
1− eRw

�+0 eRw − �−0

]}
dw

⎞
⎠ =

[
�+0 eRτ − �−0

�+0 − �−0

]2

· e−Rτ .

(37)

Solving the integrals and setting

M(τ ) = eRτ

R · (�+0 eRτ − �−0
)2 ; N (τ ) = −�+0

Rη
M(τ ); Q(τ ) = 1

ση2 M(τ )

(38)

we have

�1(τ )= N (τ ) ·
{[

eRτ (Rτ−1)+ 1
]
(η�+0 − 1)�+0 +

R2τ 2

2

(
�+0 + �−0 −2�+0 �−0 η

)
+�−0 (η�−0 − 1) ·

[
−e−Rτ (Rτ + 1)+ 1

]}

+Q(τ )

{
�+0 (η�+0 − 1)

[
eRτ log

(
�+0 eRτ − �−0

�+0 − �−0

)
− eRτ + 1

]

+(�−0 − �+0 ) log

(
�+0 eRτ − �−0

�+0 − �−0

)
+ �−0 (η�−0 − 1)

[
−e−Rτ log

(
�+0 eRτ − �−0

�+0 − �−0

)
− �+0

�−0
Rτ

]

+ (�+0 + �−0 − 2η�+0 �−0 )

eRτ∫
1

1

z
log

(
�+0 z − �−0
�+0 − �−0

)
dz

⎫⎪⎬
⎪⎭ . (39)

Though formula (39) does not have a closed form, it can be useful for the study of the
asymptotic behavior of 
1.
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Since, for τ →+∞,

eRτ∫
1

1

z
log

(
�+0 z − �−0
�+0 − �−0

)
dz ∼ R2τ 2

2
+ Rτ log

(
�+0

�+0 − �−0

)
(40)

and

N (τ ) ∼ σ�−0
R2 e−Rτ ; Q(τ ) ∼ σ(�−0 )2

R
e−Rτ , (41)

the leading order terms in (39) are given by

�1(τ ) ∼τ→+∞ (η�+0 − 1)�+0{
σ�−0
R2 e−Rτ eRτ (Rτ − 1)+ σ(�−0 )2

R
e−Rτ eRτ

[
log

(
�+0 eRτ

�+0 − �−0

)
− 1

]}

∼ �−0 (σ�−0 − 1)

R2

[
Rτ − 1− R�+0 log

(
�+0

�+0 − �−0

)]

= �−0 (σ�−0 − 1)

R
τ + 1

ηR

[
�−0
2

(
1− 1− 2η

R

)
+ 1− σ�−0

σ
log

(
�+0

�+0 − �−0

)]
.

(42)

This means that �1 behaves asymptotically as a straight line, for τ →+∞.
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